大数据处理平台架构(大数据处理平台技术架构)

2024-09-19

大数据平台架构——框架篇

1、大数据平台的核心使命,是通过数据采集、存储(Apache Hadoop与HDFS)、计算(MapReduce、Hive、SQL)和精细管理,构建起数据处理的坚实基础。存储与力量的交汇点 - Hadoop:作为分布式存储和计算的中坚力量,它通过HDFS提供海量数据的存储,而Hive则巧妙地引入SQL接口,让复杂的数据操作变得直观易行。

2、Flink CDC 0 是一款由阿里云开源的大数据平台发布的实时数据集成框架,它基于数据库日志 CDC(Change Data Capture)技术,结合 Flink 的管道能力与丰富生态,实现高效海量数据实时集成。

3、除了这些,大数据平台中必不可少的需要任务调度系统和数据交换工具;任务调度系统解决所有大数据平台中的任务调度与监控;数据交换工具解决其他数据源与HDFS之间的数据传输,比如:数据库到HDFS、HDFS到数据库等等。关于大数据平台的架构技术文章,可搜索lxw的大数据田地,里面有很多。

4、结合上述Hadoop架构功能,大数据平台系统功能建议如图所示: 应用系统:对于大多数企业而言,运营领域的应用是大数据最核心的应用,之前企业主要使用来自生产经营中的各种报表数据,但随着大数据时代的到来,来自于互联网、物联网、各种传感器的海量数据扑面而至。于是,一些企业开始挖掘和利用这些数据,来推动运营效率的提升。

5、微服务架构的讨论正热烈进行中,但在企业架构中,除了大量的在线事务处理(OLTP)交易外,还存在大量的批处理交易。例如,在银行等金融机构中,每天需要处理多达3-4万笔的批处理作业。 针对OLTP,业界有大量的开源框架和优秀的架构设计。然而,在批处理领域,这样的框架却相对较少。

数字化平台总体架构包括哪些

1、数字化平台总体架构有数字化转型战略、数据中心台、数据平台、业务应用方案、IT基础设施。数字化转型战略 明确企业的数字化转型目标、愿景和战略,以指导和统一各个部门的行动。

2、数字化平台总体架构包括“一云”、“二网”、“三平台”。“一云”城市云数据中心基于开放架构,为城市建设融合、开放、安全的云数据中心,整合、共享和利用各类城市信息资源,提升政府服务与决策效率和合理性。

3、数字化应用层。云架构共包含六层,分别是数字化应用层、数据与分析层、业务核心系统层、云基础设施层、集成与API层、网络安全层。数字化平台属于数字化应用层,提供数字化通用技术组件,来支持业务组件运作。云构架,至少作为虚拟化的一种延伸,影响范围已经越来越大。但是,云构架还不能支持复杂的企业环境。

4、数字化转型需要考虑的系统架构包括业务应用该体系、应用支撑体系、数据资源体系及基础设施体系等。业务应用体系:在规划项目领域,推进规划工作从线下搜集信息、线下人工规划向基于系统数据、线上智能规划转型。

5、这个架构应该包括设备管理、通信协议、数据存储和分析等方面。 人工智能和机器学习架构:人工智能和机器学习是数字化转型中的另一个关键领域。为了从数据中获得有价值的见解,企业需要考虑如何构建一个高效的人工智能和机器学习架构。这个架构应该包括数据预处理、特征工程、模型训练和部署等方面。

大数据架构流程图

平台数据架构流程图 标准大数据平台架构,标准大数据平台架构,大数据平台架构,数据仓库,数据集市,大数据平台层级结构,数据挖掘,举报,包含该模版的分享。数据架构设计(数据架构组) 概述 总体描述 相对于业务架构和应用架构,数据架构在总体架构中处于基础和核心地位。

大数据管理数据处理过程图 大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察力。大数据处理的主要流程包括数据收集、数据存储、数据处理、数据应用等主要环节。

大数据分析的五个基本方面 Analytic Visualizations(可视化分析)不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。 Data Mining Algorithms(数据挖掘算法)可视化是给人看的,数据挖掘就是给机器看的。